Statistical Machine Translation

June 3rd, 2014

UNIVERSITÄT DES SAARLANDES

Josef van Genabith DFKI GmbH Josef.van_Genabith@dfki.de

Language Technology II

SS 2014

Based on Kevin Knight's 1999 A Statistical MT Tutorial Work Book and some slides from Philipp Koehn

Overview

- Introduction: the basic idea
- IBM models: the noisy channel, Model 3, EM
- Language Models: the basic idea
- Phrase-Based SMT

Translation Modelling

Core component in SMT

- The IBM 3 (and other) SMT translation models P(f|e) can be complex
- A lot can go wrong = the translation model can (and will!) produce lots of strange looking e's
- Of course we hope that the probabilities for the parameters used in modelling P(f|e) will produce some good ones ...
- Still we need a bit more help ...
- The Language Model

Recall: $\hat{e} = \arg \max_{e} P(e|f) = \arg \max_{e} P(f|e) \times P(e)$

 \square *P*(*e*) trained on good English text (mono-lingual)

$$\hat{e} = \arg \max_{e} P(e|f) = \arg \max_{e} P(f|e) \times P(e)$$

Just an aside:

If we'd reason directly about P(e|f) (rather than go through noisy channel model with Baysian inversion) our probability estimates better be very good!

$$P(e|f) = \frac{P(e,f)}{P(f)}$$

Going through noisy channel + inversion allows P(f|e) to be a bit more lax/crazy (and easier to build) as it is being kept in check by P(e).

• What is P(e)?

- ... the probability of English sentences
- E.g. suppose we have a million (1,000,000) English sentences
- Suppose the sentence "How's it going?" occurs 56 times in the data
- Then we could use MLE to estimate

 $P(\text{How's it going?}) = \frac{56}{1,000,000}$

That seems reasonable ...

- Is this reasonable?
- Do we only want to look at full sentences in the data?
- And do we only assign P(e) to grammatically correct sentences?

No!

- We'll never see all possible English sentences in the data
- So a perfectly good but unseen sentence will just get P(e) = 0
- Also P(f|e) will produce quite a bit of junk and even the best may not be 100% grammatical
- People sometimes say things that are ungrammatical ...

- So how do we build these models?
- We break things (sentences) down into (sequences) of words = n-grams
- Use these as building blocks for our P(e) model

single word	unigram
two words	bigram
three words	trigram
n words	n-gram

Idea: if a string has many reasonable n-grams, it is possibly ok.

A first go: let's use the chain rule

$$P(w_1 w_2 w_3 \dots w_n) = P(w_1) \times P(w_2 | w_1) \times P(w_3 | w_1 w_2) \times \dots \times P(w_n | w_1 \dots w_{n-1})$$

Not bad. Each of the parameters of the factors can be estimated using MLE with counts from large sets of mono-lingual data:

$$b(w) = \frac{\#(w)}{\text{total word tokens in data}} \qquad b(w_i|w_j) = \frac{\#(w_jw_i)}{\#w_j}$$
$$b(w_i|w_k \dots w_j) = \frac{\#(w_k \dots w_jw_i)}{\#(w_k \dots w_j)}$$

Trouble: many longer $b(w_i|w_k \dots w_j)$ will never be seen in data

- Problem is estimating these long "histories"
- Apply the Markov assumption: limited history/memory
- Instead of

$P(w_1w_2w_3 \dots w_n)$ = $P(w_1) \times P(w_2|w_1) \times P(w_3|w_1w_2) \times \dots \times P(w_n|w_1 \dots w_{n-1})$ We do sth. like

 $P(w_1w_2w_3...w_n) \approx P(w_1) \times P(w_2|w_1) \times P(w_3|w_2) \times \cdots \times P(w_n|w_{n-1})$

Decompose string into sequences of bigrams
 Often with "invisible" beginning and end of sentence marker:
 P(w₁w₂w₃ ... w_n)
 ≈ P(w₁|⟨s⟩) × P(w₂|w₁) × P(w₃|w₂) × ··· × P(w_n|w_{n-1})
 × P(⟨/s⟩|w_n)

$$P(w_1w_2w_3...w_n) \approx P(w_1|\langle s \rangle) \times P(w_2|w_1) \times P(w_3|w_2) \times \cdots \times P(w_n|w_{n-1}) \times P(\langle s \rangle|w_n)$$

Bigram LM, first-order Markov Model:

$$P(w_1w_2w_3...w_n) \approx \prod_{i=1}^n P(w_i|w_{i-1})$$

Trigram LM, second-order Markov Model:

$$P(w_1w_2w_3...w_n) \approx \prod_{i=1}^n P(w_i|w_{i-2}w_{i-1})$$

Let b(y|x) be the probability that word y follows word x

- b is a parameter of a generative probabilistic model that generates English strings and assigns probabilities to them
- We need to estimate *b* from data: lots of English text
 Using MLE, an estimator could look like this

$$b(y|x) = \frac{count("x y")}{count("x")} = \frac{\#("x y")}{\#("x")}$$

P(I like snakes that are not poisonous .) = ?

 $P(I \text{ like snakes that are not poisonous .}) \approx$ $P(I|\text{start-of-sentence}) \times$ $P(like|I) \times$ $P(snakes|like) \times$ $P(that|snakes) \times$ $P(are|that) \times$ $P(not|are) \times$ $P(poisonous|not) \times$ $P(.|poisonous) \times$ *P*(end-of-sentence|.)


```
P(How's it going?) = ?
```

```
P(How 's it going ?) \approx
P(How | start-of-sentence) \times
P('s | How) \times
P(it | 's) \times
P(going | it) \times
P(? | going) \times
P(end-of-sentence | ?)
```

This is a bigram model

Only remembers the previous word ...

Trigram model:

$$b(z|x y) = \frac{\#(x y z)}{\#(y z)}$$

 $P(How 's it going ?) \approx$ $P(How | start-of-sentence start-of-sentence) \times$ $P('s | start-of-sentence How) \times$ $P(it | How 's) \times$ $P(going | 's it) \times$ $P(? | it going) \times$ $P(end-of-sentence | going ?) \times$ P(end-of-sentence end-of-sentence | ?)

- N-gram models can assign probabilities to sentences they have never seen
- By piecing things together from n-grams
- They generalise much better to unseen data than direct estimation of complete sentences from data
- But: they can also assign probability 0 to some perfectly good sentences:
- A bi-gram model will assign a sentence probability 0 if there is at least one single bi-gram in the sentence it never saw in training: if y never followed x in our training data, then P(y|x) = 0 ...
- Same for trigram models: if z never followed x y in our training data, then $P(z|x y) = 0 \dots$

Language Models: Smoothing

Instead of

$$b(z|x y) = \frac{\#(x y z)}{\#(x y)}$$

We can use sth. like

$$b(z|x y) =$$

$$0.95 \times \frac{\#(x y z)}{\#(x y)} + \qquad \text{(trigram)}$$

$$0.04 \times \frac{\#(y z)}{\#(y)} + \qquad \text{(bigram)}$$

$$0.008 \times \frac{\#(z)}{\#(words)} + \qquad \text{(unigram)}$$

$$0.002 \qquad \text{(if all else fails)}$$

Note: (i) this assigns non-zero probabilities to all strings (also ungrammatical strings); (ii) smoothing coefficients sum to 1
 This is not (!) the best way! There is a lot more to LMs than we can cover here ...!

- How do we estimate *b* parameters?
- Just count n-grams in large data sets and divide ...
- Fairly easy ... but you need to be a bit careful to scale this to very large data sets
- Consistent and sensible tokenisation ...

- Model
- Generative story + parameter values
- How do we know one model is better than another?
- One way to compare them: select some new testdata; what is the probability of a model given the testdata?

P(model|testdata)

Apply Bayes

```
P(model|testdata) = \frac{P(testdata|model) \times P(model)}{P(testdata)}
```


 $P(model|testdata) = \frac{P(testdata|model) \times P(model)}{P(testdata)}$

The best model is the one that maximises P(model|testdata).

- P(testdata) is the same here
- Assume P(model) is the same too
- Then the best model is the one that maximises P(testdata|model)
- P(testdata|model) is easy to compute:

P(testdata|model) = P(e), where e = testdata

Trigram models generally better than bigram

A test sentence like

I hire men who is good pilots

Will get fairly high probability by bigram model b(who|men) b(is|who)

But not by trigram model

b(is|men who)

Perplexity per word: *N* is number of words in $e = w_1 w_2 \dots w_N$

$$PPL = 2^{-\frac{\log_2 P(e)}{N}} = 2^{-\frac{1}{N}\log_2 P(e)}$$

- If a model assigns high P(e) to some unseen data e, it is not very surprised by the data and perplexity is low
- As P(e) increases, perplexity decreases
- Better models have lower perplexity
- $-\log_2 P(e)$ optimal (= minimal) number of bits to code e

$$2^{-\frac{\log_2 P(e)}{N}} = 2^{-\frac{1}{N}\log_2 P(e)}$$

Suppose we have a unigram language model with $p(x) = \frac{1}{4}, p(y) = \frac{1}{2}, p(z) = \frac{1}{4}$

What is the perplexity of the string "*x y z*"?

$$P(e) = \frac{1}{4} \times \frac{1}{2} \times \frac{1}{4} = \frac{1}{32} \text{ and } \log_2 P(e) = \log_2(\frac{1}{32}) = -5$$

$$-\frac{1}{N}\log_2 P(e) = -\frac{1}{3} - 5 = \frac{5}{3} \text{ and } 2^{-\frac{1}{N}\log_2 P(e)} = 2^{\frac{5}{3}} \approx 3.175$$

Josef.van_Genabith@dfki.de

$$2^{-\frac{\log_2 P(e)}{N}} = 2^{-\frac{1}{N}\log_2 P(e)}$$

 $\log_2 P(e)$

$$P(e) = P(w_1 w_2 \dots w_n)$$

= $P(w_1) \times P(w_2 | w_1) \times \dots \times P(w_n | w_1 \dots w_{n-1})$

$$\log_2 P(e) = \log_2 P(w_1 w_2 \dots w_n)$$

= $\log_2 (P(w_1) \times P(w_2 | w_1) \times \dots \times P(w_n | w_1 \dots w_{n-1}))$
= $\log_2 P(w_1) + \log_2 P(w_2 | w_1) + \dots + \log_2 P(w_n | w_1 \dots w_{n-1})$
= $\sum_{i=1}^n \log_2 P(w_i | w_1 \dots w_{i-1})$

$$2^{-\frac{\log_2 P(e)}{N}} = 2^{-\frac{1}{N}\log_2 P(e)} = 2^{-\frac{1}{N}\sum_{i=1}^N \log_2 P(w_i|w_1\dots w_{i-1})}$$
$$\left(P(w_1w_2\dots w_n)\right)^{-\frac{1}{n}} = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}}$$

$$a^x = e^{\ln(a^x)} = e^{x \ln(a)}$$

Perplexity Intuition: average number of choices/branching factor

What do we want to know?

- □ How good is the (S)MT output?
- □ Is a system useful?
- □ Is one system better than another?

When is a translation a good translation?
 Equivalent in meaning to source text: Adequacy
 Fluent in target language: Fluency

How many good translations are there?

Why do we want to evaluate (S)MT?

Figure 3.1: Development cycle of a statistical MT system.

How do we evaluate (S)MT?

- Manual ("subjective")
- Automatic ("objective")

Manual

- Human professional translators
- People proficient in source and target language at stake
- People who only understand target but have access to a reference?
- Can be time consuming and expensive
- □ Not easy to reproduce: rater/inter-annotator agreement
- □ MT output sometimes so bad, hard to rate ...
- Still: the yardstick, the gold-standard, the ideal ...

Josef.van Genabith@dfki.de

Language Technology II (SS 2014): Statistical Machine Translation

Human Evaluation

- Guidelines
- Adequacy (Scale of 5)
 - All meaning 1.
 - Most meaning 2.
 - Much meaning 3.
 - 4. Little meaning
 - 5. none
- Fluency (Scale of 5)
 - Flawless (English) 1.
 - 2. Good (English)
 - Non-native (English) 3.
 - 4. Disfluent (English)
 - Incomprehensible 5.

*

Judge Sentence

You have already judged 14 of 3064 sentences, taking 86.4 seconds per sentence.

Source: les deux pays constituent plutôt un laboratoire nécessaire au fonctionnement interne de l'ue.

Reference: rather , the two countries form a laboratory needed for the internal working of the eu .

Translation	Adequacy	Fluency
both countries are rether a necessary laboratory the internal operation of the op-	00000	00000
bour countries are rather a necessary laboratory the internal operation of the ed.	1 2 3 4 5	1 2 3 4 5
both countries are a necessary laboratory at internal functioning of the au	00000	00000
bour countries are a necessary laboratory at internal functioning of the et .	1 2 3 4 5	1 2 3 4 5
	00000	00000
the two countries are rather a laboratory necessary for the internal workings of the ett.	1 2 3 4 5	1 2 3 4 5
	00000	00000
the two countries are rather a laboratory for the internal workings of the eu.	1 2 3 4 5	1 2 3 4 5
	00000	00000
the two countries are rather a necessary laboratory internal workings of the et .	1 2 3 4 5	1 2 3 4 5
Annotator: Philipp Koehn Task: WMT06 French-English		Annotate
	5= All Meaning	5= Flawless English
Instructions	4= Most Meaning	4= Good English
	3= Much Meaning	3= Non-native English
	2= Little Meaning	2= Disfluent English
	1= None	1= Incomprehensible

¥

- Very hard to do for humans
- Juggle 5 (possibly equally miserable or good) automatic translations (for possibly long sentences)
- With respect to 2 dimensions on a scale of 5 each ...
- Miserable inter-annotator/rater agreement
- Don't know what is wrong or why a system is good or bad ..

Judge	Sentence
-------	----------

You have already judged 14 of 3064 sentences, taking 86.4 seconds per sentence.

Source: les deux pays constituent plutôt un laboratoire nécessaire au fonctionnement interne de l'ue.

Reference: rather , the two countries form a laboratory needed for the internal working of the eu

Translation	Adequacy	Fluency
hoth countries are rother a necessary laboratory the internal operation of the sy	00000	00000
bour countries are rather a necessary laboratory the internal operation of the et .	1 2 3 4 5	1 2 3 4 5
hath any tains and a management laboration, at internal function in a of the su	00000	00000
bour countries are a necessary laboratory at internal functioning of the et .	1 2 3 4 5	1 2 3 4 5
	00000	00000
the two countries are rather a laboratory necessary for the internal workings of the et .	1 2 3 4 5	1 2 3 4 5
de a terre e contrata e contrata e la baser de la forma de la contrata de la contrata de la contrata de la cont	00000	00000
the two countries are rather a laboratory for the internal workings of the et .	1 2 3 4 5	1 2 3 4 5
the two countries are rather a necessary laboratory internal workings of the ou	00000	00000
the two countries are rather a necessary laboratory internal workings of the etc.	1 2 3 4 5	1 2 3 4 5
Annotator: Philipp Kochn Task: WMT06 French-English		Annotate
	5= All Meaning	5= Flawless English
Instructions	4= Most Meaning	4= Good English
	3= Much Meaning	3= Non-native English
	2= Little Meaning	2= Disfluent English
	l= None	1= Incomprehensible

Appraise (Christian Federmann 2012)

Thanks to grant funding (subsidy of 2.8 million)	Dank dieser Finanzierung (Zuschüsse in Höhe
they were able to purchase equipment and for	von 2, 8 Mio. CZK) konnten die notwendigen
the period of two years provide qualified	Einrichtungen und die Ausstattung beschafft
personnel and operation. The European Union	werden und für die Dauer von 2 Jahren ist für
announces having allocated in 2010 2.2 thousand	qualifiziertes Personal und für den Betrieb
million Euros, a good token of observance of its	gesorgt. Die EU verkündet, im Jahre 2010 2,2
promise of 7.2 thousand million Euros in 2012.	Milliarden Euro freigesetzt zu haben, was sie auf den
 Source Dank Subventionsfinanzierung (Subvention von 2.8 Millio den Zeitraum von zwei Jahren für qualifiziertes Personal Translation A 	richtigen Weg zur Respektbezollung ihres Engagements von 7,2 Milliarden im Jahre 2012 bringt. – Reference Donen) konnten sie Ausstattung kaufen und sorgen für I und Operation.

Error classifications (Vilar et al. 2006):

Figure 1: Classification of translation errors.

Error classification MQM QTLaunchPad (Lommel et al. 2013):

Error classification MQM Core QTLaunchPad (Lommel et al. 2013):

Error classification MQM MT Subset (Lommel et al. 2013):

Error classification MQM mapping to SAE J2450 (Lommel et al. 2013):

Error classification MQM mapping to ITS 2.0 (Lommel et al. 2013):

- Time Consuming
- Expensive
- Difficult to define and operationalise
- Hard to reproduce: inter-rater agreement
- Hard to scale: though see crowd-sourcing (Chris Callison-Burch papers)
- Still: indispensable and the yardstick
- All "serious" MT shared tasks/competitions (such as WMT, IWSLT, NIST, ...) do a human evaluation track
- and, of course, they also do automatic evaluation ...

The basic idea

 Given a reference translation (or several reference translations), compare MT output against

How?

- How similar are they?
- Word, n-gram, string-overlap (surface string similarity)
- More sophisticated stuff (not just surface string matching based)
 - Stemming, morphological analysis, synonyms, paraphrases, syntactic and semantic structure, etc.

Reference:Israeli officials are responsible for airport securitySystem A:Israeli officials responsibility of airport safety

- Word overlap: precision, recall and f-measure
- Precision: how many of the words in output are correct?

 $\frac{\# \ correct \ words \ in \ output}{\# \ total \ words \ in \ output} = \frac{3}{6} = 0.5$

Recall: how many of the words in reference are in the output?

 $\frac{\# \ correct \ words \ in \ output}{\# \ total \ words \ in \ reference} = \frac{3}{7} = 0.43$

F-measure: harmonic mean of precision and recall $f_score = \frac{2 \times precision \times recall}{precision + recall} = 0.46$

Automatic Evaluation: F-Measure

Reference: Israeli officials are responsible for airport security
System A: Israeli officials responsibility of airport safety
System B: airport security Israeli officials are responsible
System C: security Israeli are officials responsible airport

	System A	System B	System C
precision	0.50	1.00	1.00
recall	0.43	0.86	0.86
f-score	0.46	0.86	0.86

Problem: f-measure can reward unintelligible word salad if individual words are O.K. ...

Fails to reflect word order

Reference:	Israeli officials are responsible for airport security
System A:	Israeli officials responsibility of airport safety
System B:	airport security Israeli officials are responsible
System C:	security Israeli are officials responsible airport

Look at n-gram overlap, not just words n-gram precision (n = 1 ... 4), plus brevity penalty $BLEU = \min(1, \exp(1 - \frac{|reference|}{|output|}))(\prod_{n=1}^{4} n - gram \ precision)^{\frac{1}{4}}$

■ BLEU = 0 if the hypothesis does not have a matching n-gram for any of the $n = 1 \dots 4$: System A and C!

Reference:	Israeli officials are responsible for airport security
System A:	Israeli officials responsibility of airport safety
System B:	airport security Israeli officials are responsible
System C:	security Israeli are officials responsible airport

$$BLEU = \min(1, \exp(1 - \frac{|reference|}{|output|}))(\prod_{n=1}^{4} n - gram \ precision)^{\frac{1}{4}}$$
$$(\prod_{n=1}^{4} n - gram \ prec)^{\frac{1}{4}} = (\frac{6}{6} \times \frac{4}{5} \times \frac{2}{4} \times \frac{1}{3})^{\frac{1}{4}} = 0.1333^{\frac{1}{4}} = 0.60$$
$$\min\left(1, \exp\left(1 - \frac{|reference|}{|output|}\right)\right) = \min\left(1, \exp\left(1 - \frac{7}{6}\right)\right) = 0.87$$

 $BLEU_B = 0.87 \times 0.60 = 0.52$

Language Technology II (SS 2014): Statistical Machine Translation

Reference: Israeli officials are responsible for airport security
System A: Israeli officials responsibility of airport safety
System B: airport security Israeli officials are responsible
System C: security Israeli are officials responsible airport

	System A	System B	System C
f-score	0.46	0.86	0.86
BLEU	0	0.52	0

Problem: BLEU assigns 0 to many hypotheses
Meant to work on document, not sentence, level
sBLEU for sentence level ...

$$BLEU = \min(1, \exp(1 - \frac{|reference|}{|output|}))(\prod_{n=1}^{4} n - gram \ precision)^{\frac{1}{4}}$$

Fancy way of writing BLEU:

$$BLEU = \min(1, \exp(1 - \frac{|reference|}{|output|}))(\exp\left(\sum_{n=1}^{4} \lambda_n \times \log(n - gram \, prec)\right))^{\frac{1}{4}}$$

 λ_i usually 1...

Correlation with Human Judgement

Josef.van_Genabith@dfki.de

Evidence of Shortcomings of Automatic Metrics

Post-edited output vs. statistical systems (NIST 2005)

2 └─ 0.18

0.2

0.22

Evidence of Shortcomings of Automatic Metrics

0.24

Bleu Score

0.26

0.3

0.28

Automatic MT Evaluation Metrics

- Treat all words as strings: no difference between function and content words
- Do not consider global grammaticality
- Do not consider meaning

Yesterday John resigned from the company John quit the company yesterday

- Scores by themselves do not mean much
- Human translators score low on BLEU

But: many referencesMETEOR, MEANT, Karolina Owczarzack ...

